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1) Brief introduction to XGC family codes
2) Present Capability of XGC1

 Kinetic ion physics with MC neutral particles
* New physics with kinetic electrons
« Starting the quest for the L-H transition physics

3) Future Plans for XGC1 (Brief)

* Impurity physics

L-H transition physics

E&M

Multiscale time integration between XGC1 and XGCa
3D RMP penetration and transport

4) Summary



The XGC Program is built on multi-disciplenary
collaboration among physicists, applied
mathematicians and computational scientists
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Full-f Gyrokineic code XGC1 in diverted geometry

XGC1: X-point included Gyrokinetic Code 1

* To build a gyrokinetic numerical tokamak-edge

« Heat and torque (and particle) input profiles in the core
« Edge plasma self-organizes with core plasma, in the absence of an artificial

core-edge boundary

» Edge plasma is in a non-thermal equilibrium state and requires a
non-perturbative kinetic simulation
* In contact with material wall with neutral recycling, radiative loss, wall-sheath
Non-Maxwellian, requiring nonlinear collisions
Magnetic separatrix geometry: Orbit loss and X-transport

Steep pedestal, with the gradient-width being ~ ion banana width
Blobs: dn/n = ©(1)

* Nonlocal self-organization among overlapping multi-scale physics
* Neoclassical, turbulence, neutral particles with atomics physics, and wall

—->XGC1 is designed to study such plasmas

-- Requires extreme scale computing (2014 award ~300M hrs)



XGC family codes: XGC1, XGCa and XGCO

All three codes push particles in 3D x-space + 2D in v-space

* In realistic diverted geometry
* Monte Carlo neutral atoms with CX and ionization interactions with plasma
» Uses logical sheath at limiter wall

» XGCa: Gyrokinetic neoclassical version

« Axysymmetric electrostatic-potential solver version of XGC1

 Solves not only for E,, but also for E,

Automatically includes the gyroviscosity and the gyroviscous cancellation,
as in XGC1

Nonlinear Fokker-Planck-Landau collision

~10-100X faster than XGC1

Impurity particles, raditive loss and anomalous transport are to be added

= XGCO: Drift-kinetic neoclassical version

» Flux-surface averaged potential solver

« Has more complete impurity particle routines, including radiative loss
» Conservative linear Monte Carlo collision [Boozer, Wang, Lin ...]

« Uses anomalous transport and viscosity models



XGC family codes produce 0 IR YO
all-scale observables from i ‘i# M = |
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XGC1 has been verified in various ways [Ku et al, NF09]

Recent multi-codes cross-verification of ITG-TEM transition in 6f
method (GTC/FULL/GT3D/XGC1-6f/GEM)
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* Original figures from Rewoldt, et. al. Computer Phys. Comm. (2007)
* The cross-verification updated in Holod and Lin, PoP 20, 032309 (2013)



At a practically strong rotation speed, conservation of
momentum in XGC1 has been verified. Mostly affected by

particle noise (<1/N)

parallel flow
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2) Present Capability of XGC1

 Kinetic ion physics with MC neutral particles



2) Full-f ion physics in XGC1
* Gyrokinetic ions, Adiabatic electrons, and Monte Carlo neutrals recycled at wall

* Realistic boundary condition: ®,,=0. No core-edge boundary.

- Self-organization of a
flux-driven plasma-ITG-
neutrals system

* Plasma and turbulence
evolve together until
stiff SOC where power
balance is maintained

* Self-organization

through ExB zonal flow
and GAM exicitation

Simulation by S. Ku, Visualization by K.-L. Ma’s group
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2D neutral particles evolve consistenly with plasma

DB: neutral_glige

Logarithmic plot of 2D

Cycle: 0 ims
o deuterium neutral atom
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Power balance is a turbulence time-scale concept
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Red: Total heating power
Purple: Charge exchange cooling at 2.0 ms
Green: Charge exchange cooling at 5.2 ms

= Meso scale GAM and limit-
cycle appear to set the
power-balance time.

= During the power balance,
plasma and turbulence
continuously seek for SOC.

Neoclassical
ITG turbulence
Neutrals

Ti-Te Collision



XGC1 evolves T, in stiff self-organized criticality

* TRINITY, TGYRO, etc: “Scale separation assumption. Turbulence simulation in small
regions of the space-time grid, embedded in a coarse grid on which fluid transport
equations are evolved” [M. Barns et al, PoP2010]

» XGC1 studies turbulence and transport physics without scale separation,
together with heat/torque source, wall-loss and neutral particles

 Turbulence in XGC1 yields a “stiff’ self-organized T, profile. Edge T, determines
core T,.
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Self-organizing interaction between outward heat bursts by
ITG turbulence and E’xB control of turbulence

» Self-organizing interactions in the w-k-x-t space can be clearly seen in the bursty initial stage
* Similar interactions at smaller scale exists at later time in the form of avalanche and zonal layers

 Temperature perturbation information at edge propagates to core in this fashion, taking <3ms in
DIII-D: cold/hot pulse experiment, propagation speed ~ 0.3 km/s ~ 1.7 p46Viios) /Ro™ 0-4 Vs

* Global T;and turbulence settle down in several ms. H-layer
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Self-organization and ExB Staircase

Turbulence intensity
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XGC1 showes that ITG turbulence is sensitive to

neutral atomic physics

* Cooling of T. in pedestal slope = A higher turbulence drive (1)) at pedestal top
 Damping of ExB shearing rate by neutrals
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Neutral particles at outer part of pedestal affect
n; at pedestal top from the ion orbit smoothing

* Edge T, profile saturates at steeper gradient with neutral particle recycling
" Maintaining adequate n, and high edge ITG turbulence is difficult without
neutrals
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Notice difference in dT./dr in neutral-less _
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EXB shearing rate is weaker with neutrals in the edge pedestal

- higher turbulence level
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Edge rotation source and inward momentum pinch

DIII-D ECH shot #141451 Neoclassical

* Detailed experimental P-S flow
measurement exists
[S. Muller, PRL & PoP, 2011] -=== time = 0(ms)
40 (a) ===-time = 1.5 (ms)

— Conventional fluid
Reynolds stress could not
explain experiment

* Full-f XGC1-produced
edge rotation profile and
inward momentum pinch

speed, agreeing with

«time = 3 (ms)
» CER data at 50 (ms)
- probe data at S0 (ms)
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Validation of the edge momentum source and the
inward momentum flux in DIII-D edge plasma

Experiment (Muller et al., 2011)

e Edge momentum source seen

* Measured turbulent Reynolds stress
cannot explain either edge
momentum source or inward
momentum transport

1.5 T T T
_ (a) —— (n)(®,9,) (Reynolds stress)
@ —— (v,) (7v,) (Particle transport) -
é —— (nv,v,) (Triple correlations)
o 05 -
£
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- (nv,v,) (All fluid stresses)
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40
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1> normalized

XGC1 simulation (Suh et al., 2013)

* Momentum source is observed and
identified to be from neoclassical physics

* Total momentum flux from full-f ITG +
neoclassical orbilts is inward, with a
correct magnitude.
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lon transport in the KSTAR core agrees
with stiff ITG turbulence + Neoclassical

Time averaged R/Lt

10 4 , :
—1 MW heating case
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e
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H mode shot #5681 at time=2.48 s

NBI heating power is 1.5 MW: 1 or 1.5 MW to ions examined
Less heating power keeps similar R/L; = stiffness

Heating region : yy=from 0 to 0.35



Momentum transport is also consistent
with ITG turbulence in KSTAR H-mode

Experimental torque profile from NUBEAM XGC1 simulation results
04 —L-mode (2.015 s) 3 ‘ |
= | -mode (2. s — s
0.35 ——H-mode (2.435s) £ 95 N Momentum flux _
Z &9 e Integrated input torque
T’ g 2 '
€025 >,
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c 02 =
(] E 1
© 0.15 5
E— e
S 0.1 S 0.5
0.05 g 0"
0 : : : : E 05 ‘
0 0.2 0.4 0.6 0.8 1 0.
- 0 0.2 0.4 0.6

« Total torque ~ 0.95 (Nm) (from NUBEAM analysis)
« Graph shown here is for 1.5MW ion heating case



Outline

2) Present Capability of XGC1

* New physics with kinetic electrons
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2. Kinetic electrons & nonlinear coherent structures

Pseudocolor
Var: turbulence
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Min: -499.8
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Poloidal potential variation in the scrape-off layer
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Examples of H-mode blobs in experiment

LCFS = In H-mode, blobs move more
aﬁ rapidly in the poloidal direction
b= / than the radial direction

a = |n L-mode, the blob motion is

b more noticeable in the radial
direction (see D’lppolito, Myra,
Radial Zweben PoP 2011)
NSTX /
SHI 39444| . 266 to ;68 msec zlmd MlinI-h >1.
gL Q; i
6 LS 5 cm T N ‘
61 - E i | Myra et al.
| & 1 TTF 2012
g b 1 I NSTXL-mode
Boedo et al. PoP 2011, BES =
Soon after H-transition in DIII-D I U
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Time-slice figures of ed®/T, from XGC1, zoomed into the
outboard midplane of a diverted tokamak edge (DIlI-D).

 Blobs are generated by shearing action by EXB flows near separatrix
» Blobs move outward across the separatrix into scrape-off

o
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Gyrokinetic blobs in XGC1, 2013

As blobs move out, they also move
downward by a several cm in 4 ps.
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A
s
=
=
-
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6cm
Blob motion in DIII-D, 2013

[Boedo et al, BES]



XGC1 measures heat load footprint on a given
divertor configuration.

Heat deposition profile on outboard DIII-D divertor

Electron

_1 .3 ’:"',"’(l" Sepa ratrix . ,"‘I,I",l,‘ Sepa ratrix

-1.32

1.66 1.68 1.7 1.72 1.74 1.76 ' 1.66 1.68 1.7 1.72 1.74
R {m) R {m)

* With nonlinear Coulomb collisions and neutral recycling
* lons show wider heat flux footprint than electrons

1.76
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Effective radial particle diffusivity in H-mode pedestal
stays small even with blobs - Indication of inward
particle pinch?

(Preliminary result)
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Inward particle pinch is found!
(preliminary result)

Electrostatic edge turbulence yields inward particle pinch in the
presence of neutral particles!

Electron radial transport

[Fo]
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S

Magnetic separatrix
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Outline

2) Present Capability of XGC1

 Starting the quest for the L-H transition physics
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Starting the quest for the L-H transition physics

» XGC1 is starting to study physics related to L-H transition
» There are two types of experimental observations w.r.t. L-H transition
* Neoclassical ExB shearing rate is corelated with L-H transition

S.M. Kaye et al., Nucl. Fusion 51, 113109 (2011)
D.J. Battaglia et al., Nucl. Fusion 53, 113032 (2013)
Others

 Vorticity merging and secondary oscillation are observed before and
at L-H transition: HL-2A (IAEA2012) & others

= Both types of observations are supported by XGC codes
= XGC1 will attempt a gyrokinetic L-H transition in 2014



XGCn’s provide evidences that neoclassical ExB

shearing rate is correlated with P,
[Fiture from Battaglia et al., NF 2013 on NSTX plasma]
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L l T 1 T

(d)]

0.8}

WEexB (103 S-1)

0.4}

0.0 . ..

i1

0.94 0.96 0.98
WUn

1.00 1.02

» Experiment: Smaller
Ry requires 30%
higher P s, and
torque

= XGCO: At 30%
higher power and
torque, the ExB
shearing rate is
similar to larger Ry
plasma

= XGCO finds
 Anomalous
D=x=0.1 m?/s is
needed to match
experimental
profiles.

33



XGC1 has verified vorticity merging in edge pedestal

» Vorticity merging to a surface 1
just-inside the separatrix is

Measured at 0.96<W\<1

. . )
observed in XGC1 with both = 05
» adiabatic electrons (ITG turb.) and 7\7“
 kinetic electrons (ITG + TEM + K:)Q U
Resistive + other drift waves) \I{
-0.5
» and in both 3
* L-mode (affects L-H transition?) 1
 H-mode (affects hysterisis?) 1% 10"
1)(101:5 .
05
o5 &
E o -
3l AT
-0.5 c
Vo)
1 V -0.5¢
189 0.95 1 1.05 ,
Lb - 1
o \ 2 1 0 1 2

Min(w) at W,=0.99



Vorticity merging

Vorticity merging with kinetic electrons, collisions and neutral recycling
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Apple-to-apple XGC1 & experiment comparision is needed

X0 T T T T T T

— G |
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i | | | | |
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W 0k [ o G50,
} 5x10* QQILQQQ‘O”O‘OWG‘ HL-2A
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< 510 G0 |
E _1x10%F . o
—4 -2 0 2 4
7Ty (CTN)
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Nonlinear L-H transition from a conventional D(shear-suppression)
model, with self-consistent plasma dynamics

- First-principles L-H transition in XGC1 will be tried in 2014
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We have started the L-mode plasma simulation in route
to L-H transition study in Boedo/McKee’s DIII-D Plasma

= Nonlinear blobby turbulence, transport, role of collisions, roll of neutrals

« Base case campaign is being done: without collisions or neutrals

» Second campaign: with collisions and neutrals

« Third campaign: continue the simulation to study the L-H transition at higher P,
» Fourth campaign: What happens after the L-H transition?

.n/n, t=0.078 ms

25 T T T T T T r
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s shortfall | | 0.1
E 0 = ] ‘\_ O" O
S - \— A Y
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Outline

3) Future Plans for XGC1

* Impurity physics

L-H transition physics

E&M

Multiscale time integration between XGC1 and XGCa
3D RMP penetration and transport

4) Summary
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Upcoming new capabilities in XGC1

= Upcoming capabillities
« Multiple impurity species

Heat conductivity (m?/s)

* Collisional physics being verifi
» Electromagnetic turbulence
 Turbulence in 3D magnetic

perturbation (preliminary)
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We are moving the E&M turbulence capability to edge

0.16

GTC
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0141 + XGC M
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01F |
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0.08F |\ i N
0061 +'\
0.04r
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0.02 ! ! 1 1 ! R —g
0 1 2 3 4 5 6 7 8 9 10

* By this summer: GK ions + fluid electrons with kinetic electron closure [Chen11]

* (Double) split-weight and hybrid electron schemes are also to be implemented

beta

Cross verification of Alfven wave
frequency in XGC1 using hybrid-
electron scheme (Collaboration
with UC Irvine)
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— Include tearing parity modes (Lang-Ku, in collaboration with U. Colorado)
 E&M solver is being extended from reduced MHD to full MHD
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Continuity Eq. : The same except high order terms

don, (no&qk,) ( ”0) VB,
+Boby - V| ——=| +Byvg- V| — | —ng(v,+vg) - —=0
GTC 9t 00 B() OYE BO 0 E BO
don, : nel||, l
— + (BV|+ 0B, -V) +vg-Vn, +———B
GEM ot m.L2,. B~

: : 2n
X VB -V (9pLe +0pje) + 7B x VB Vep =0,

Ampere’s Eq. & Vector potential: The same

C ) 1 7514
1106’511”6 = _VL 5A“ + Hozi511||i 5E” — bo . Vﬁ(b - — ¢ - I
4 c Jt
Ohm’s Law: .
GTC c?gbgfg _On, OYdng  ba dng Details i
OE, = —by - V. T, = o 1o I g datg etalls In next page
B . : . . e
GEM  enoE) = - Bl -Vpjo —b-Vop +ny,, Massless fluid with resistivity
) me . > 2 _ .
enofy =22 (VIVi¢ + ViE)) Kinetic closure

=-V- Jmc\' vaferdv — J;tb - VBqf,1dv + ion terms,



Neoclassical XGCO0 says, at no/n_.=10%, Li
moves outward while C*®* moves inward at ¢, <1.

Radial transport speed profiles

60 T T 1 | | T
0
Li influx rate across the pedestal is low. Manion =+~
40 - “No sign of Li accumulation in core” Li o
Sy \\ ﬂr' ;
20 + PN X |
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X
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. across pedestal o
w0 | Reduction of C in a thin
) layer around separatrix
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Normalized poloidal flux
43



RMP Penetration & Plasma Transport in XGCO

» Realistic Diverted geometry:EFIT

» Magnetic equilibrium and perturbation solver
from M3D: oy(dJ+)

* Monte Carlo neutral particles with wall-recycling ...

« Experimental level of heat and momentum
source at core-edge boundary

« Random-walk modeling of anomalous transport = o«|
to reproduce pre-RMP plasma

Assumptions for the RMP study in XGCO ..

e Small 3D 0B << B,
* Vp(y,) are supported by partial stochasticity and the 1,-aligned cantori
2 VO(y,) holds, E| is fromb- V ,©
* Qusi-steady solution exist 0A/0(t/Tyen) 2 0, (Ej =-6b.V O(r) -0A,,/dt)
* Assume that turbulence-driven transport is small compared to RMP-driven
transport

| Ogs=3.58. B-tracing from W =0.96. |

B=B,+0B

P E|=-V®,*0B,/B,
Dy
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Simulation reproduces all the qualitative features of experiment,

inside the ELM suppressmn window (q95—3 58)

o 0.4 ¢ : . "
E03 b “before "'go—
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- After RMPS . go, After RMPS
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DIII-D Experiment 126006 at ~100 ms after

RMPs Simulation. at 4ms after the RMP turn-

45 on: still evolving.



An Example Challenge in EPSI, requiring
collaboration with all four Institutes+

Multi-scale Time Advancement

» Prolong the high fidelity simulation to experimental edge transport time scale
« Time consuming turbulence simulation may not be needed at all time steps

* Divide XGC1 in XGCF(axisymmetric+turbulence) and XGCC¢(axisymmetric)

« Use the ®F(turbulence) data in XGCC, with updates as needed

Grid coarsening and refining for restricting and lifting

 Perform the computation of L | .
XGCC and XGCF at data 1000X reduction in n'umber of grid

source.

* Minimal loss of kinetic
information in restricting and g
lifting.

— Common
(gyrokinetic)equations
between fine and coarse
grained systems

c=0 C=2xn



Questions to study

« Time steps ATC and ATF?
« Stability?

« Stiff profile?

 Solution bifurcation?

—~>Heavy usage of data
management, math and
analysis in-memory.

Collaboration with SUPER
and QUEST is essential

t

G"(d; fF,D)=0
G%(d,D; f ¢)=0

* d=B.D. condition,
heating profile, etc.

* D=0F(x,t)

* Tighter than the

Heterogeneous
Multiscale Method

N(f€) << N(fF)

D(x,t) =0 (x,t) + SDF(x,1)
ATC2

XGCC

ATC, (~5ms)
XGC¢

ATS,

XGCC | ~50 ms

fC
fF

f¢ (~1 ms) f¢ ft
fru AT | fF ATF, | fF
SOF(x,t) =

XGC* OF(x,t) — O (x,t)

XGCF

OF(x,t) OF(x,t)




Summary

» Present version XGC1 simulates a comprehensive electrostatic edge
transport physics in diverted geometry (pedestal+SOL+core): including
kinetic ion+electron turbulence, neoclassical, neutral recycling, nonlinear
collisions, impurity radiation, and logical sheath.

» XGC1 simulates edge blobs

» Measures heatload footprint on realistic-geometry divertor plates.

= Calculates the intrinsic edge momentum source and its inward transport
» XGC1 started the quest for the L-H transition physics

* Verified correlation of P, , with neoclassical ExB shearing rate.
* Finds vorticity merging in pedestal (strengthening the mean ExB shearing rate).
*L-H transition is to be attempted in 2014

= XGC1 is presently electromagnetic in the core delta-f plasma: The E&M
capability is currently being move to diverted edge (Lang, Ku, Chen).

= Multiacle XGC1-XGCa framework is being developed in EPSI
= RMP physics capability is to be moved from XGCO to XGC1 (Hager)



